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ABSTRACT

A weakness of deep learning methods is that they can fail when there is a mismatch between source and target data domains.
In medical image applications, like segmentation, this is a common situation when data from new vendor devices or different
hospitals have to be processed. In some cases, unlabeled data from the new domains are available in the training phase
(domain adaptation), whereas in other cases, no training data is available for the new domains (domain generalization).
In this paper, we propose a framework for domain adaptation and generalization that maps images into a universal domain
where the segmentation task is performed. The objective of using a universal domain is to unify the appearance of the images
without regard to their respective original domain. To obtain this mapping, an image generator is trained to accomplish the
following three objectives. First, it must generate images that are good for the task at hand. Second, it must generate realistic
images, and finally, the origin domain of the images must be indistinguishable.
Our method has been validated on the M&Ms dataset, a multi-source dataset for unsupervised domain adaptation and
generalization problems, outperforming previous methods. Specifically, our method significantly boosts the test results on the
unlabeled and unseen domains without hurting the performance in labeled domains.

Introduction
In real-world problems, machine-learning methods are built with data from different, but related, source domains, which
can then be deployed on a target domain with a different data distribution1, 2. This is particularly common in medical image
segmentation, where practitioners build their models with few labeled examples that are collected from different hospitals,
with different machine vendors, and different acquisition protocols3. Ideally, these models should generalize to data coming
from outside the training distribution (different vendors and protocols). In some cases, unlabeled data from a new location is
available in advance, which provides a last opportunity to adapt the models before their deployment. On the other hand, in
some cases, no data (labeled or unlabeled) is available from new locations, but the model should have enough generalization
capabilities to provide an accurate result.

Deep Convolutional Neural Networks (CNNs) are currently the state of the art on almost all computer vision problems,
like semantic segmentation among others. This superior performance is achieved by using large amounts of labeled data4, 5.
However, their performance can be significantly affected by slight differences at the source and target distributions6. To address
this issue, several unsupervised domain adaptation and domain generalization methods have been proposed7–10.

Since unlabeled data is relatively easy to collect, Unsupervised Domain Adaptation (UDA) methods aim to reduce the
performance drop caused by changes between the source (training) and target (test) domains by using the available unlabeled
samples as auxiliary information during training11, 12. However, unlabeled data from the target domain is not always available.
To tackle this situation, domain generalization methods try to learn domain agnostic representations by aligning the distributions
of each domain at the pixel value13 or feature level14.

Although existing works15 have improved the performance of domain adaptation and domain generalization tasks for
semantic segmentation, most of them tackle these problems separately. We consider a more realistic scenario where adaptation
and generalization can be tackled simultaneously.

Our work.
In this paper, we present DASeGAN, an adversarial domain adaptation and domain generalization method for semantic
segmentation. DASeGAN is an adversarial framework that reduces the discrepancies between the source data domains towards
a new representation which is referred as universal domain in this work. The key elements of DASeGAN are: 1) a segmentation
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Figure 1. Domain translation to remove source domain discrepancies. The images on the left are original source Magnetic
Resonance (MR) images. The images on the right are corresponding DASeGAN invariant translations.

network; 2) a universal translation network; 3) a domain discriminator network; and 4) a similarity consistency loss. The
segmentation network takes the images and performs the segmentation task. The translation network converts data from
different domains into a universal representation in which the discrepancies among the original domains are reduced. To do this,
the translation network is trained adversarially by transforming a given image to a random source domain. This encourages the
translation network to take into account all of the discrepancies from the source domains, pushing the translated image into a
universal representation to fool the discriminator. With that, the discriminator is used in an adversarial manner to determine not
only if whether input image is real, but also to distinguish which source domain the input image comes from. An important
requirement of the translation network is that it must preserve the spatial structures of the image. To achieve this goal, a
similarity consistency loss is used to enforce the spatial layout between the original and the translated images as shown in
Figure 1. A key aspect of our approach is that the training process is much simpler compared to other algorithms that include
multiple feature-level adversarial losses6, 16, 17 and reverse cycle-consistent translation losses18, 19, for each pair-domains.

Our contributions.
We present an adversarial learning approach for domain generalization and domain adaptation problems.

The key point of our approach is that all of the data images are converted into a universal domain representation in which
the segmentation task is performed. Our approach avoids the use of inverse translation networks by using an adversarial
domain discriminator and spatial consistency loss between the segmentations obtained using the original images and the image
representations in the universal domain.

Our framework can be applied to segmentation tasks with multiple source domains where the shape of instances and the
spatial layout of different instances are similar across domains. Experimental results on the M&Ms dataset2, which could
be considered a gold standard for evaluation of domain adaptation and domain generalization approaches, demonstrates the
effectiveness of our framework. The source code is available at release after acceptance.

1 Related Work
Unsupervised Domain Adaptation.
Domain Adaptation seeks to reduce the performance drop when source and target domains exhibit different data distributions.
In the case of Unsupervised Domain Adaptation (UDA), unlabeled data from the target domain is available during training.
UDA methods can be classified into two categories depending on the number of available labeled source domains: single-source
domain adaptation (SDA)20–22, and multi-source domain adaptation (MDA)23–27.
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SDA methods focus on the single-source scenario where models are generally trained using auxiliary losses to deal with the
domain shift, such as reconstruction losses28, discrepancy losses29–31, and adversarial losses32.

A more common situation is when multiple source domains are available. In this case, the simplest approach for MDA
is to ignore the origin of the data and pool all of the data into a common general domain. However, it has been shown that
this simple approach may not perform well in many scenarios33. More sophisticated, MDA methods make use of distribution
shifts among available source domains to build more robust models. Despite the increasing interest in using MDA methods for
semantic segmentation problems, most of them are still developed for image classification problems30, 34, 35.

For the problem of semantic segmentation, Zhao et al.14 propose learning a cycle GAN to translate images from each
source domain to the target domain. Finally, a specific segmentation model for the target domain is trained using the translated
source images. More recently, He et al.13 presented a collaborative framework using an ensemble of models that are trained on
source domains to generate pseudo labels for unlabeled target data, producing soft supervision from models that are trained on
different source domains.

A common issue of MDA methods is that the number of translation and task-specific networks increases considerably as
the number of data domains increases.

Domain Generalization.
The problem of domain generalization arises in situations where no training data (labeled or unlabeled) is available for a target
domain. Domain generalization methods rely on the use of the available source domains to learn representations that are more
invariant across the different domains or to learn models that are more robust to shifts in the input data distribution.

In order to reduce the biases between domains, Style Transfer methods seek invariant representations by reducing the
appearance shifts. To achieve this goal, simple image normalization methods such as histogram matching are used36. More
complex methods are built upon adaptive instance normalization (AdaIN) layers37 allowing zero-shot style transfer to be
performed between the source and the target domains38, 38, 39.

More recent domain generalization approaches are based on the use of cycle GANs40, which map data across source
domains. In this case, the model is trained using both original and transformed images, i.e., cycle GANs are used as a powerful
data augmentation method to increase the model robustness against changes in the input data distribution. In the case of
semantic segmentation problems, the consistency of these augmentations is enforced by keeping the same segmentation labels
in the original and transformed images41.

Finally, instead of generating new data, feature-based domain generalization methods seek to remove texture discrepancies
between source domains in order to learn disentangled representations that eliminate the style information42.

Consistency constraint.
Consistency constraints allow neural networks to learn mappings between different domains without paired data. These
constraints have been largely used in various domain adaptation schemes12, 43–45.

Consistency constraints can be applied at the pixel or feature levels. At the pixel level, the most common consistency
constraint is image reconstruction cyclic loss46. This loss enforces the invertibility of the transformations so that when an
image from a specific domain is translated to another, it should be possible to recover the original image from its translated
counterpart. However, the complexity of this approach increases with the number of available domains as it requires as many
cycle GANs as pairs of possible domains.

Consistency constraints can also be applied at the feature level. In this case, the models are forced to align the intermediate
feature maps obtained for the original and corresponding translated images11, 14.

In our work, we present a novel consistency constraint that keeps the spatial layout of the different structures of interest by
using a segmentation network and an additional synthetic universal domain. The use of a single additional domain is in contrast
to other schemes that require multiple translation networks for each domain pair.

2 Methodology
We consider the problem of multi-source unsupervised domain adaptation and generalization for semantic segmentation.
We observe that, although the images of different source domains are sampled from different i.i.d distributions (e.g., from
independent hospitals), apart from differences in appearance, the shape of structures of interest and the spatial layout of each
structure is similar in all domains. The rest of this section is organized as follows. First, we provide an overview of our
DASeGAN method in Section 2.1. Then, in Section 2.2 we describe the losses that we used to train DASeGAN framework.
Finally, network architecture and training details are provided in Section 2.3.
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Figure 2. DASeGAN framework overview. By only using the signals of the segmentation network F , we can maintain the
consistency of the structures of interest between the initial source domain images X and their translated version G(X). Given a
source domain image X , the translation network G learns to translate it to a random source domain G(X), pushing the generator
to learn a mapping that removes the discrepancies between these domains.

2.1 Method Overview
At the time of training, we are provided with data from multiple labeled data domains L = {l1, l2...lm} and unlabeled data
domains U = {u1,u2...un}, where m and n are the number of labeled and unlabeled domains, respectively. Let S = L ∪U
be the set of data source domains available for training.

At validation and test times, the models are evaluated in a set of target domains T = S ∪{t1, t2, ...tp}, where p is the
number of data domains that are not available for training.

Data domains in U are useful to evaluate unsupervised domain adaptation, whereas domains ti, 1 ≤ i ≤ p, are useful to
evaluate the model domain generalization.

Our main goal is to learn a model F that correctly predicts the semantic segmentation masks from all of the domains in T .
Figure 2 illustrates the framework used to accomplish this goal.

The key element of this framework is the translation network G. The task of G is to reduce the discrepancies between data
domains (data distribution shifts) by translating data images into a common (universal) domain where the segmentation can be
performed more effectively. G is trained adversarially by using a discriminator network D. The discriminator D has two main
objectives. First, it must distinguish whether a given image is original (real) or translated (fake). Second, it must predict the
data domain label from which the original image was sampled.

A common issue of GAN frameworks is the mode collapse where the generative network does not preserve the image
structures of the image by finding an easy way to fool the discriminator. In the context of domain translation, this problem is
tackled by the use of cycle consistency losses47. However, this requires as many independent cycle GANs as source domains
pair combinations.

In our methodology, we prevent this mode collapse by applying the same segmentation model F to the original and
translated images. Then, a consistency loss is used to preserve the spatial structures of the image, as shown in Figure 2.

2.2 Training losses
Segmentation loss.
For semantic segmentation, we define the segmentation loss Lseg as the K-way cross-entropy loss between the segmentation
predictions and the corresponding ground truth:

4/12



Lseg(G,F,L ) =−E(X ,Y )∼L

[
K

∑
k=1

1[k=Y ] log(σ(F(k)(X))) +λqual

K

∑
k=1

1[k=Y ] log(σ(F(k)(G(X))))

]
(1)

where K is the number of different semantic classes, σ denotes the softmax function, (X ,Y ) are the source and corresponding
label images sampled from a labeled data domain in L , and G(X) is the translated image. The hyperparameter λqual balances
the values of the two terms of Lseg. The value of λqual is increased during the training process to compensate for the reduced
quality of G(X) at the beginning of the training.

Segmentation Consistency loss
This loss enforces the consistency between the predictions made by F using the original X and translated images G(X). We
encourage this consistency by using an L1 norm as the loss function:

Lconsis(G,F,S ) = EX∼S [∥ F(G(X))−F(X) ∥1] (2)

It is important to note that X is picked from S = L ∪U so that X could be an unsupervised image. Therefore, while the
previous segmentation loss can only be applied to images sampled from L , this segmentation consistency loss is also applied
to images where the segmentation label image Y is not available.

Domain Adversarial loss
The mapping function G seeks to reduce the discrepancies between the different source domains in S by translating the images
into a common (universal) domain. In order to learn that mapping, we introduce an adversarial discriminator with cross-entropy:

Ldomain(G,D,S ) = E(X ,ys)∼S

[
log(σ(D(ys)(X)))

]
+E(X ,ys)∼S

[
log(σ(D(ŷs)(G(X)))

]
(3)

where ys is the label that indicates the source domain in S from which X was sampled.
The objective of G is to generate images G(X) that the discriminator D cannot determine where S comes from. To do this,

when the generator G is trained, a random source domain label ŷs, ŷs ̸= ys is used as the target. By using a random domain
label ŷs at every batch, we enforce the generator to translate the source images to an equiprobable universal domain where the
discrepancies from each domain are removed in order to fool the discriminator the maximum number of times.

Real-Fake adversarial loss.
The same discriminator network D is also trained to spot real and fake images (i.e., original images X and artificially generated
images G(X)) by using a binary cross-entropy loss. This is a complimentary loss that enforces G to generate images that seem
real and not artificially generated:

L f ake(G,D,S ) = EX∼S [log(σ(D(X)))]+EX∼S [log(1−σ(D(G(X)))] (4)

The use of L f ake prevents G from including artifacts or peculiarities of specific cases.

Full Objective.
Our full objective is:

LDASeGAN(G,D,F,S ) = λseg ·Lseg +λconsis ·Lconsis +λdomain ·Ldomain +λ f ake ·L f ake (5)

where λseg, λconsis, λdomain, and λ f ake are the hyperparameters that are used to control the relative importance of the respective
loss terms. The LDASeGAN loss is used to solve the following problem:

G∗,F∗
seg,D

∗ = argmin
G,F

max
D

LDASeGAN (6)
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2.3 Network Architecture and Training Details
We implemented and trained DASeGAN framework using Pytorch. We adopted the U-Net48 architecture as the segmentation
network with ResNet-3449 as the backbone. The generator structure consisted of nine residual blocks, each of which was
composed of a convolutional layer, instance normalization, and a ReLU activation. For the discriminator architecture, we used
a PatchGAN50, which aims to classify whether overlapping image patches are real or fake. All of the networks were randomly
initialized. The networks were trained using Adam optimizer with a starting learning rate of 0.001, β1 of 0.5, β2 of 0.999, and a
batch size of 16 images. We kept the same learning rate for the first 40 epochs and linearly decayed the rate to zero over the
next 20 epochs. The images were center cropped and resized to 256×256 pixels.

We used two kinds of data augmentation techniques to extract more information from the original dataset and to enhance
the model performance. These transformations incorporate the typical variance present in the dataset and can be divided
into spatial transformations and intensity driven-modifications. We applied the following spatial transformations to all of
the source images: elastic deformations with a gaussian filter of 177 pixels of standard deviation; horizontal and vertical
flips; up to 45-degree rotations; and scalings and image shifts within a 20% range of the image size. To preserve coherence,
we made spatial transformations by applying the same geometrical transformations to both images and masks. Meanwhile,
intensity transformations were only applied to translated images G(X) in order to regularize the segmentation network against
transformations of that kind. These included: histogram matching with random samples; changes in brightness and saturation;
and contrast modifications of up to 25% of the image.

Following previous works, we evaluated DASeGAN performance on the test set, obtaining the Dice similarity index
associated with the segmentation. To analyze domain generalization and domain adaptation capabilities, the results are stratified
by the domain and the heart substructure of interest. We trained our framework in parallel with two NVIDIA RTX 2080 GPUs
with 8 GB memory each.

3 Experimental Results

3.1 Dataset: Open M&Ms
We evaluate DASeGAN under medical image segmentation settings. In this scenario, there are abundant unlabeled data from
multiple source domains, but there are few labeled samples since manual segmentation is a time-consuming task that must be
done by an expert clinician. Furthermore, the model may be deployed on new domains where no training data is available
(labeled or unlabeled) due to issues with data-right.

The Multi-Centre, Multi-Vendor & Multi-Disease Cardiac Image Segmentation Challenge (M&Ms)2 provides a reference
dataset for the community to build and assess future generalizable models in CMR segmentation. M&Ms presents a hard
challenge since it assesses model generalization on unknown CMR vendors (see figure 3). To do this, the dataset was composed
of 375 patients with hypertrophic and dilated cardiomyopathies as well as healthy subjects. All of the subjects were scanned in
clinical centers in three different countries (Spain, Germany, and Canada) using four different magnetic resonance scanner
vendors (Canon, Siemens, General Electric, and Philips). The CMR images were segmented by experienced clinicians from the
respective institutions, including contours for the left (LV) and right ventricle (RV) blood pools as well as for the left ventricular
myocardium (MYO).

Due to data rights problems, M&Ms was released as a subset from the M&Ms Challenge dataset, where 20 cases were
removed from the test partition, and 10 cases were removed from the validation partition. We denote this subset composed of
345 patients as Open M&Ms. The authors of M&Ms provide detailed metrics from all of the participants for every segmentation
case. Therefore, for Open M&Ms, the metrics were calculated taking the corresponding subset of cases for a fair comparison.
The models were trained using the provided training partition and were then evaluated using the test partition.

The employed M&Ms dataset analyzed during the current study is available in the M&Ms Challenge repository. All the
data is included in "Multi-Centre, Multi-Vendor, and Multi-Disease Cardiac Segmentation: The M&Ms Challenge"2 published
article, and can be downloaded under a reasonable request at https://www.ub.edu/mnms/. Furthermore, we confirm
that all experiments were performed in accordance with relevant guidelines and regulations and consent was obtained from all
participants.

3.2 Results
We compare our approach with the top-5 results on the M&Ms Challenge51–55. We recalculated their publicly available scores
on the released Open M&Ms subset, which are shown in the top block in Table 1. The middle block in Table 1 shows our main
results. First, a baseline result is obtained only using the segmentation network F trained with the labeled source domains L .
Next, we add the results when the segmentation network F is embedded in the DASeGAN framework show in Figure 2. As it is
shown in this diagram, it is possible to retrieve the segmentation masks by using either the original image X (top branch), or
the translated image G(X) (middle branch). The results obtained using each of these branches are named DASeGAN-S and
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Figure 3. Open M&Ms dataset. Each colored square represents 10 subjects of the dataset (a CMR cine sequence). Green
square represent labeled data; orange squares represent unlabeled data.

Method Vendor A Vendor B Vendor C Vendor D
LV MYO RV LV MYO RV LV MYO RV LV MYO RV

Robustness51 0.937 0.853 0.908 0.914 0.876 0.887 0.903 0.841 0.883 0.909 0.838 0.882
L. P.52 0.931 0.848 0.905 0.915 0.872 0.886 0.898 0.833 0.876 0.902 0.826 0.870
H. M.53 0.928 0.839 0.899 0.913 0.867 0.879 0.894 0.826 0.873 0.897 0.824 0.870
Backprop54 0.934 0.836 0.901 0.913 0.867 0.879 0.905 0.832 0.870 0.918 0.833 0.816
Aug.55 0.924 0.826 0.876 0.910 0.858 0.870 0.890 0.817 0.819 0.902 0.820 0.882

Baseline 0.934 0.850 0.902 0.911 0.870 0.883 0.895 0.834 0.874 0.902 0.830 0.874
DASeGAN-S 0.935 0.848 0.901 0.913 0.872 0.885 0.906 0.845 0.890 0.908 0.833 0.879
DASeGAN-T 0.938 0.853 0.907 0.913 0.877 0.887 0.909 0.847 0.895 0.920 0.844 0.890

λ f ake = 0 (DASeGAN-T) 0.935 0.850 0.902 0.910 0.874 0.886 0.906 0.845 0.892 0.911 0.835 0.882
λconsis = 0 (DASeGAN-T) 0.897 0.826 0.779 0.863 0.796 0.803 0.839 0.801 0.814 0.830 0.744 0.726

Table 1. Quantitative results comparison using the Dice similarity on M&Ms dataset. The results were stratified by scanner
vendor and heart substructure. There are labeled data from Vendor A and B, unlabeled data from Vendor C, and no data from
Vendor D. We denote the best results in bold. The baseline represents the classical approach of training the segmentation
network F with labeled data only. DASeGAN-S and DASeGAN-T represent when using the source image and their translated
version, respectively. Finally, two ablation studies are carried out to study the influence of the training losses in the DASeGAN
framework.
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DASeGAN-T respectively in Table 1. Finally, two ablation studies are shown in the last block of Table 1 using the DASeGAN-T
approach. In the first ablation, we study the influence of the real-Fake adversarial loss. In the second ablation, we study the
influence of the segmentation consistency loss.

At first glance, it can observed how DASeGAN-S and DASeGAN-T maintain their performance on the source labeled
domains (Vendors A and B) with negligible improvements (i.e., do not hurt the baseline performance). Studying the domain
adaptation capabilities on the unlabeled source domain (Vendor C), we can see a 1.5% improvement to the baseline method by
the DASeGAN-T approach. For the case of the domain generalization problem (Vendor D), the DaSeGAN-T improves the
segmentation results by 2% on average compared to the baseline case, achieving the best results over all the compared methods.

This superior performance of DASeGAN-S and DASeGAN-T on the unlabeled (unseen) datasets, when comparing with the
baseline method, suggests that the DASeGAN framework acts like other self-ensemble approaches by enforcing the source and
translated mask predictions to be consistent10, 56.

A detailed comparison between DASeGAN-S and DASeGAN-T methods shows that the differences on the unlabeled
domain (Vendor C) are minimal. In contrast, with the unknown domain (Vendor D), the translation version DASeGAN-T
achieves significant improvement concerning the baseline approach and DASeGAN-S. This result also validates the effectiveness
of our proposed method for domain generalization, reducing the segmentation gap between domains.

The ablation studies shown in the bottom block of Table 1 show the importance of the consistency segmentation loss Lconsis.
Notice that when λconsis = 0 the segmentation network F can not take any advantage with the use of unlabeled data during the
training. Finally, the use of the real-fake loss L f ake adds a marginal improvement since it helps the generator to create more
realistic translated images.

Figure 4 shows the qualitative results stratified by scanner vendor. We show DASeGAN translation examples and compare
the results using the baseline method, DASeGAN-S, and DASeGAN-T. It can be observed how the translation network tries
to equalize and enhance the images from different domains to look similar. More interestingly, it can be observed how the
DASeGAN translation network is able to remove artifacts as long as they are not consistent across domains (see the upper left
corner of the original and translated images of vendor A in Figure 4). Figure 1 shows another representative example where
DASeGAN can non-linearly correct and balance the brightness levels and is also able to suppress the artifacts that were causing
intensity problems. Compared to other methods (Table 1) it can be seen that DASeGAN-T outperforms all other approaches in
the unlabeled and unknown domains (Vendor C and D), where there was greatest room for improvement.

4 Limitations and Discussion
Although our method can be used in many computer vision problems, the DASeGAN framework needs labeled segmented data
from at least one source domain. Specifically, it needs to know how to segment the structures of interest of the main task in
order to achieve semantic consistency between translations and source images. Thus, self-supervised learning approaches work
on a pretext task without involving any human annotation to generate pseudo labels that can be used as supervisory signals. It
may be interesting to explore self-supervised learning approaches in order to learn consistent representations and to extend our
method to other machine-learning problems. For instance, our method could be easily adapted to classification problems by
replacing segmentation labels with automatically extracted image edges in order to maintain the general spatial structure of the
images57.

5 Conclusions
In this paper, we present a simple but effective domain adaptation framework for semantic segmentation, which also improves
the performance on unseen domains (domain generalization). We show how our method maintains the consistency between
source and translated images by only using the task predictions and an adversarial domain discriminator, removing the need for
inverse mappings and supplementary networks commonly found in the literature. An important advantage of our method is
that it scales to unlimited number of source domains without increasing the complexity since we use the same segmentation
network over a universal domain to obtain the segmentation masks. Finally, we demonstrate the effectiveness of DASeGAN by
using the M&Ms dataset, a multi-source domain segmentation problem. Thus, DASeGAN can improve the domain adaptation
and generalization capabilities of the base segmentation network by outperforming previous results in unlabeled and unseen
domains, while maintaining segmentation network performance on labeled domains.
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